联光元和研究成果获国际同行关注和认可

发布人:联光元和

发布时间:2022-07-21 15:36

     

       联光元和研究团队参与的关于空间相干光的研究成果于2022年6月14日以"Design of coherent wideband radiation process in a Nd3+- doped high entropy glass system"为题在线发表于Light:Science & Applications 。论文提出了一种利用展宽声子和吸收模式的协同效应设计的新型辐射过程,揭开了光频转换技术的新篇章。


自然杂志子刊7月18日在线发表意大利科学家Michele Marrocco的评述,对前述研究成果进行了热情点评。在此全文转载,以飨读者。


Doped high-entropy glassy materials to create optical coherence from maximally disordered systems

Michele Marrocco


 Abstract

Control over excitation wavelengths, sample size, and doping concentrations in glassy materials with high levels of configuration 

entropy shows promises of efficient correlation between absorption and build-up of coherent emission of radiation.


   More than 60 years ago, the first laser operation at the hands of Theodore H. Maiman1 unveiled the power of optical coherence (i.e., the fundamental feature of laser action) and gave birth to one of the most important scientific and technological revolutions in human history. Since then, uncountable applications and developments have been flooding the full extent of human activities. Lasers are found everywhere. Their popularity touches any fragment of our society. One example among many is the barcode reader which has become an indispensable tool for industrial and commercial purposes. Not to mention how the laser is an invaluable asset to science at large. However, more scientific and technological advancements are to come as though optical coherence was a wonder that never ceases to amaze us. Here, we present another innovation that holds the promise of more interesting applications. It regards the generation of optically coherent emission in materials where the entropic disorder nears its maximum.

   The first question to ask is why should we care about materials of that kind? High-entropy materials (HEMs) are usually made of alloys2–4 . They are very attractive for a number of reasons. To name them, good structural stability, high strength, and hardness, outstanding wear resistance, limited softening due to high temperatures, and low sensitivity to deterioration caused by corrosion and oxidation. These features result from the accurate design of such structures. To fulfill the objective, the trick resides in a random distribution of multiple atomic components filling the crystal lattice. They are also nearly equal in numbers and the final distribution determines a significant increase in the configuration entropy5 . Under such a circumstance, being the relative abundance of such atomic components similar in space, the macroscopic picture is captured by a material where the evenly distributed disorder emulates a single phase system6 . Nonetheless, on the downside, these structures are not transparent and we cannot take advantage of their robust peculiarities when it comes to optical applications. Understandably, the optical regime requires the propagation of electromagnetic fields at visible or infrared wavelengths and opacity is detrimental to any ambitious goal of turning HEMs into novel optical media. The solution to the conundrum is within the reach of conventional laser physics and points towards glassy materials with optically active centers. Such systems mimic the optical medium used in known solid-state lasers (e.g., Nd:Glass7 ). The choice guarantees the successful realization of HEMs with great optical potentialities and, for obvious reasons, laser operation is captivating although challenging. The route is indeed arduous and presents itself with several unknowns.



Fig.1 Schematic view of the photon and phonon assisted radiation generated by the BPAWR and SACM processes.The incident radiation is here represented by means of one single wavelength (green) for the sake of simplicity. BPAWR processes on the left side are responsible for blue-and red-shifted fields. They are generated after (a) excitation (green) and phonon propagation (dark red), (b) excitation (green) and a weaker phonon (dark red), and (c) excitation (green) in combination with an absorbed phonon (dark red). SACM processes relate to the previous ones by means of emission and self-absorption of photons (gray). Processes f, g, and h are responsible for the stimulated emission induced by the pre-existing trigger field generated within the BPAWR processes. Processes d and e are just other possible optical pathways among the many more not shown here


 

  A contribution aimed at exploring high-entropy glass systems (HEGSs) in view of laser operation comes from the work by Zhang et al.8 . In their contribution, fundamental questions that HEGSs pose are explored and much emphasis is given to the role of phonon broadening in the coherent build-up. The phenomenon is rather intricate and needs some explaining. In glassy materials with multiple atomic components, vibrations (or phonons) propagating through the host deviate from the ideal quasi-monochromatic limit and vibrational energy is dispersed over many frequencies (phonon broadening). This manifestation is very common and carries information about thermal and transport characteristics of HEMs911. On the other hand, phonon broadening has seemingly an adverse effect when combined with the absorption and emission of radiation in ordinary materials. It represents a mechanical channel through which energy is dispersed and its unfavorable effect appears in the broadening of infrared absorption. On a more negative note, it must be underlined that spectral broadening is usually the precursor of incoherent optical phenomena and, as such, there is no correlation between absorption and emission. Instead, Zhang and collaborators find a novel and unexpected result: in HEGSs, there exists enough correlation to induce coherence. The outcome is really surprising and is complemented by the discovery that spatial coherence occurs at a low excitation threshold. How is this possible? The answer lies in the role played by phonon broadening.

   The HEGS used by Zhang et al. is designed on the close packing of oxides. In particular, tetrahedral and octahedral voids are formed through close packing of O2-. The voids can be occupied by ions of different types and the presence of several atomic components widens the frequency of the collective vibrations. Therefore, high levels of configuration entropy in HEGSs imply inescapable phonon broadening. The energy exchange between spectrally broadened vibrational waves of the doped glassy medium and the excitation field is shown in Fig. for the simplest case of one single incident wavelength (green). The simplification helps in identifying some of the fundamental processes expected for the generation of the broadened-phonon assisted wideband radiation (BPAWR) and a subsequent self-absorption coherence modulation (SACM). In particular, BPAWR processes are responsible for blue- and red shifted field components. They can have sufficient strength to trigger the cascade of stimulated emissions (i.e., the essential ingredient of laser action) that are at the core of the optical coherence found in HEGSs. This circumstance strongly depends on the phonon-assisted transitions that occur in both types of optical processes. The working principle can be summarized as follows. After excitation, a collective vibration removes (or add) part of the internal energy that has previously been absorbed. The subsequent radiative relaxation generates a field that starts to propagate (case b among the BPAWR processes of Fig. 1). This field initiates the build-up of stimulated radiation when the medium participates with excited states that are resonant with the propagating frequency (yellow).The condition occurs thanks to other combinations between spectrally broadened phonons and additional field components (cases f, g, and h among SACM processes of Fig. 1). Control over excitation wavelength, sample size, and doping concentration affects the SACM processes and, by playing with these control variables, Zhang and collaborators claim a good level of tunability so that the fifinal emission can be tailored to the needs of specific purposes. 

   One limiting factor of the suggestion by Zhang et al. is the conversion efficiency which amounts to a fraction of %. This low conversion efficiency is due to the short mean free path of the phonons at room temperature. Their energy is turned into heat by the unavoidable phonon scattering and this constitutes an important limitation on the account of the strong dependence of SACM processes on phonon persistence. Therefore, better conversion values are expected at low temperatures that guarantee longer propagation distances of the vibrational wave.

 Despite the limitation, the findings of Zhang and coauthors demonstrate a successful approach to fabricating novel HEMs with optical capabilities. While the potential of doped glassy materials for the generation of coherent radiation is well known7 , the present work is free from the presence of an optical resonator that is conventionally used to boost the build-up of the coherent field. Furthermore, the extreme sensitivity to excitation wavelength, sample size, and doping concentration can be used to engineer spectrally broad emissions. Hence, the proposed research is of inspiration to make more significant contributions to the development of a light source made of HEMs with a high degree of optical coherence spanning a large portion of the spectrum. The availability of broadband and widely tunable systems is indeed important for the innovative research areas of supercontinuum generation, laser amplification, and advanced optical communication.



Published online: 18 July 2022


参考文献

References

1. Maiman, T.  H. Stimulated optical  radiation  in  Ruby. Nature  187, 493– 494(1960).  

2 . Tsai, M. H. & Yeh, J. W. Highentropy alloys: a critical review. Mater. Res. Lett. 2, 107123 (2014).  

3. Gild, J. et al.  Highentropy  metal diborides: a  new class of highentropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).  

4. Oses, C., Toher, C. & Curtarolo, S. Highentropy ceramics. Nat. Rev. Mater. 5, 295309 (2020).  

5. Berthier, L., Ozawa, M. & Scalliet, C. Conigurational entropy of glassforming liquids. J. Chem. Phys. 150, 160902 (2019).             

6. Hu, Q. et al. Parametric study of amorphous highentropy alloys formation from  two  new  perspectives:  atomic  radius  modiication  and  crystalline structure of alloying elements. Sci. Rep.  7, 39917(2017).   

7. Koechner, W. Solid-State Laser Engineering. (New York: Springer, 1999).  8. Zhang, L. D. et al. Design of coherent wideband radiation process in a Nd3+- doped high entroy glass system. Light Sci. Appl. 11,181(2022).

9. Körmann, F. et al. Phonon broadening in high entropy alloys. Npj Comput. Mater. 3, 36 (2017)

10. Li, X. Y. et al. Observation of highfrequency transverse phonons in metallic glasses. Phys. Rev. Lett. 124, 225902 (2020)

11. Gelin, S., Tanaka, H. & Lemaître, A. Anomalous phonon scattering and elastic correlations in amorphous solids. Nat. Mater. 15, 1177- 1181 (2016).



原文地址:

https://www.nature.com/articles/s41377-022-00920-7

邮箱:office@synlumin.com

电话:021-20919009

地址:上海市浦东新区康桥东路1159弄91号

扫一扫公众号

沪ICP备2022032495号-5